Data Table:

Averages

	Distance (cm)	Light Intensity (lux)
1		
2	50	3,516
3	100	1,322
4	150	766
5	200	696
6	250	600
7	300	380

Graph

Equation

Light Intensity=(7420000/d^2)+443.6
In order to get the light intensity you need to divide 7.42 million divided by the distance squared plus b which is 443.6. This relationship shows that the light intensity decreases the further you get. This is an inverse squared relationship.

